skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jafarnia-Jahromi, Mehdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. In this paper, we propose an approximate rela- tive value learning (ARVL) algorithm for non- parametric MDPs with continuous state space and finite actions and average reward criterion. It is a sampling based algorithm combined with kernel density estimation and function approx- imation via nearest neighbors. The theoreti- cal analysis is done via a random contraction operator framework and stochastic dominance argument. This is the first such algorithm for continuous state space MDPs with average re- ward criteria with these provable properties which does not require any discretization of state space as far as we know. We then eval- uate the proposed algorithm on a benchmark problem numerically. 
    more » « less